ATHENA: An Ontology-Driven System for Natural Language Querying over Relational Data Stores
نویسندگان
چکیده
In this paper, we present ATHENA, an ontology-driven system for natural language querying of complex relational databases. Natural language interfaces to databases enable users easy access to data, without the need to learn a complex query language, such as SQL. ATHENA uses domain specific ontologies, which describe the semantic entities, and their relationships in a domain. We propose a unique two-stage approach, where the input natural language query (NLQ) is first translated into an intermediate query language over the ontology, called OQL, and subsequently translated into SQL. Our two-stage approach allows us to decouple the physical layout of the data in the relational store from the semantics of the query, providing physical independence. Moreover, ontologies provide richer semantic information, such as inheritance and membership relations, that are lost in a relational schema. By reasoning over the ontologies, our NLQ engine is able to accurately capture the user intent. We study the effectiveness of our approach using three different workloads on top of geographical (GEO), academic (MAS) and financial (FIN) data. ATHENA achieves 100% precision on the GEO and MAS workloads, and 99% precision on the FIN workload which operates on a complex financial ontology. Moreover, ATHENA attains 87.2%, 88.3%, and 88.9% recall on the GEO, MAS, and FIN workloads, respectively.
منابع مشابه
Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کاملFREyA: An Interactive Way of Querying Linked Data Using Natural Language
Natural Language Interfaces are increasingly relevant for information systems fronting rich structured data stores such as RDF and OWL repositories, mainly because of the conception of them being intuitive for human. In the previous work, we developed FREyA, an interactive Natural Language Interface for querying ontologies. It uses syntactic parsing in combination with the ontology-based lookup...
متن کاملControlled English Ontology-Based Data Access
As it is well-known, querying and managing structured data in natural language is a challenging task due to its ambiguity (syntactic and semantic) and its expressiveness. On the other hand, querying, e.g., a relational database or an ontology-based data access system is a well-defined and unambigous task, namely, the task of evaluating a formal query (e.g., an SQL query) of a limited expressive...
متن کاملEnglish Querying over Ontologies: E-QuOnto
Relational database (DB) management systems provide the standard means for structuring and querying large amounts of data. However, to access such data the exact structure of the DB must be know, and such a structure might be far from the conceptualization of a human being of the stored information. Ontologies help to bridge this gap, by providing a high level conceptual view of the information...
متن کاملSimplifying Syntactic and Semantic Parsing of NL Based Queries in Advanced Application Domains
The paper aims at presenting a natural (sub)language based querying approach (MDDQL) for SQL (relational, object-relational) databases, which relies on an ontology driven, interactive query construction mechanism. This guides the user to the construction of queries that are semantically compliant with the application domain semantics. To this extent, syntactic and semantic parsing of a query is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 9 شماره
صفحات -
تاریخ انتشار 2016